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Spectral modelling of homogeneous non-isotropic 
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(Received 28 November 1979 and in revised form 16 June 1980) 

The paper describes a method to calculate homogeneous anisotropic turbulent fields 
associated with a constant mean velocity gradient. The equations governing the 
Fourier transform of the triple velocity correlations are closed by using an extended 
eddy-damped quasi-normal approximation. An angular parametrization of the second- 
order spectral tensor is introduced in order to integrate analytically all the directional 
terms over a spherical shell. Numerical solutions of the model are presented for typical 
homogeneous anisotropic flows. 

1. Introduction 
The problem of closure in spectral space has been considered in several ways. The 

quasi-normal hypothesis associated with a damping term (EDQNM) is one of the most 
straightforward treatments. Originally the quasi-normal hypothesis was introduced by 
Millionschikov (1941), then by Proudman & Reid (1954) for the case of isotropic 
turbulence. O’Brien & Francis (1962) and Ogura (1963) brought to light some inconsi- 
stencies: the assumption overestimates the transfer term which generates a negative 
part in the turbulent energy spectrum. This first theory was improved by Orszag (1 970) 
who introduced a damping term, which moderates the growth of the spectral transfer 
Later most refinements were made by several authors (Leith 1971; Andre & Lesieur 
1977), and striking results were thus obtained for the case of an isotropic turbulent 
field. Our purpose is to extend this sort of assumption to  the case of a homogeneous 
anisotropic turbulence associated with a constant mean velocity gradient. 

This approach, which starts from the equations of velocity correlations a t  several 
points and their Fourier transforms (Burgers & Mitchner 1953), is supported by the 
exhaustive analytical investigation of Craya (1958). 

The equations governing the triple velocity correlations are presented. They are 
closed by using an extended eddy-damped quasi-normal approximation. Even in the 
case of non-isotropic fields, the relaxation of the triple correlations is only taken into 
account through a single eddy-damping coefficient. 

These equations are cast into a tractable form in order to  carry out a computing 
treatment. The turbulent structures are be considered according to their sizes only. 
I n  fact, a parametrization of the second-order spectral tensor is introduced which 
displays wavenumber directivity. Consequently, integration over a sphere of radius 
K is performed analytically. At this stage a new scalar parameter appears. 

The adjustments of the two previous parameters are made by reference to  the decay 
of isotropic turbulence and to the rapid distortion of an initially isotropic turbulence. 
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The method is applied to several cases, some interesting comparisons with experi- 
mental data are chosen. The results of Gence (1979) are considered; the sudden change 
in the direction of the principal axes of the straining process is analysed. The way in 
which an anisotropic turbulence turns into an isotropic state is also examined in order 
to  clarify the role played by nonlinear terms. 

2. The eddy-damped quasi-normal approximation for homogeneous non- 
isotropic turbulence 

The flow under consideration is incompressible; moreover the turbulent field is 
supposed to be homogeneous. All the variables can be split into two parts which 
respectively characterize the mean and the fluctuating fields : 

= (K) + vi. 
The mean velocity is given by 

(E(x, t ) )  = v: + hi, q; 

V! and the mean velocity gradient hi, are independent of x and t and the Fourier 
transform of the Navier-Stokes equation for the fluctuation ui can he written as 

wherein v is the molecular viscosity, B i ( K , t )  is the Fourier transform of the three- 
dimensional velocity field 

Bi(K,t) = I J zii(x, t )  exp ( - i K  . x) d3x. w3 R3 

The two terms, on the right-hand side of equation (2.1),  respectively represent the 

We now introduce the Fourier transform of the correlation functions 
turbulent advective effects and the nonlinear part of the pressure mechanisms. 

(gi(x, t )  vj(x + r, t ) )  exp ( - i K  . r)  d3r, 

&.l( K, P, t )  = (vi(x, t )  vi(x + r, t )  q(x + r', t )  exp [ - i( K . r + P . r')] d3r d3r', 
( 2 4  i s  R' 

connected with Si( K) through the relations 

(2.2) 1 (GAP, t )  

i(Oi(Q,t) Oj(K,t)Ol(P,t)) = 6(K+P+Q)$ i j l (K,  P,t) .  
t ) )  = S(K+ P) &(K, t ) ,  

Multiplying (2.1) by suitable products of Fourier modes, we obtain, by taking ensemble 
averages and introducing previous definitions (2.2), 

(i + 2vRP) qiii + $-ii = ajj, (2 .3)  
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with 

and 
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(2.4) 

with the definitions 

Olijk ( K ,  p ,  t )  = - (wl(x) wi(x) vj(x + r )  vk(x + r ' ) )  exp [ - i( K .  r + P . r') d3r d3r'; 

0;ijk = o l i j k ( P , Q , t ) ;  0;ijk = O i i j k ( Q ,  K , t ) ;  K + P + Q  = 0. 

The problem is closed if the fourth-order correlations are expressed in terms of third- 
and second-order correlations; assuming that the joint probability distribution at  
three points is not too far from a normal law, the fourth-order cumulant is supposed to 
be linearly dependent on the third-order cumulant (Sulem, Frisch & Lesieur 1975). 
We have then in spectral space: 

C,4mj, = Onnljl(K, P ,  t )  - (WnVnJ J(K + P )  $ j l (  - K ,  t )  - $nj(K, t )  $ m l ( P ,  t )  

- $nl(P, t )  Qmj(K, t )  = dio,mjlpqr$pgr(K, P ,  t ) .  

With the above hypothesis, equations (2.4) can be written 

(2.6) 

I n  the right-hand side of equation (2.6),  the first term incorporates double corre- 
lations only, whereas the second term takes into account the departure from a normal 
law through a linear relaxation. 
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The three terms v( K 2  + P2 + Q z )  Qi j l ,  $ijl and Lg&.$ppr are written in the compact 
form 

v(K2 + P2 + Q 2 )  Q i j l +  $ijl+ Lc&rQppr = p ( K ,  P ,  Q> t )  Q i j l ,  (2.7) 

where p introduces a scalar eddy damping rate similitr to  that initially proposed by 
Orszag (1970) 

p(K,P,(3,t) = ~,(1;~+p'+&~)+r(IL,t)$?1(P,t)_tr(9,t); 

therefore me find that  

(i+/,) Qi j ,  = oq .  

The model may then be regarded as a simplified form of the generalized test field 
model (Kraichnan 1972) in which different damping factors are determined from 
a dynamical equation. I n  the previous assumption (2.7) the incorporation of the 
typically non-isotropic term y21,1 in the diagonalized form has to be discussed especially. 
We can remark that the mean velocity gradient is taken into account in the equation 
governing the double correlations. This effect is thus previously introduced in the 
equation (2.8) through the term LIZ?. Then the variation of Qijl with time should be 
primarily controlled by !28?. Moreover in equation (2.3),  we are only concerned with 
a part (relation 2 . 5 )  of the triple velocity correlations weighted by the wavenumber, 
and thus the behavioiir of equation (2.4) has to be considered especially for the case of 
large and moderate wavenumbers. AccordingIy the assumption 

v (K2  + P2 + Q') @ i j l +  L$&r $ p r y  B y2.ijl 

should be verified a t  least in this range. 
In  any case, this closure process can be considered as an extension of the eddy 

damped quasi-normal theory to turbulent fields subjected to small velocity gradients. 
The validity of this approach will later be verified by comparisons with experimental 
data. 

For the solution of equation (2.8) it is found that 

$ijl(K, P, t )  = #ijl(K, '7 0) exp 

From the definition ( 2 . 5 )  of t j j  it follows that 

For large values of t  the Markovian assumption yields 

t,j(K, t )  = Kl]R8f?IcI,Q i2,9,7( K, P,  t )  d3P when B K p Q  = p- l ,  

and thc cquation (2 .3)  is closed if the eddy damping rate 71 is known. 
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3. Parametrization of angular dependence of q5ij with K 
In order to limit the computing time, an essential simplification in applying the 

theory is to integrate analytically the closed equation (2.3) over a sphere of radius R. 
For the new averaged function, 

we have 

I 
P?(K, t )  = JJAs, KlK,  

O K p y  [ K ,  !28:( K ,  P, t )  + K,  a$:( K, P, t ) ]  d3P dA ( K ) ,  

y ( K  t )  = Kl/RJ4<pQ [ Q $ ' X  p, t )  + Q 3; ( K, P, t ) ]  d3P dA( K ) .  

(3.2) 

I n  order to perform an analytical integration of the right-hand side of (3.1) the 
representation theorems are used for Qi,. At first, we have to make a convenient choice 
of the arguments to be introduced. We take the following representation : 

The kinetic-energy spectrum E is used as the single-dimensional scalar function 
for $<,. The non-dimensional function T j  can be considered as an extended form of the 
exact representation of Oi, for isotropic turbulence. T j  depends on angular arguments 
a,,, = K,,,/K of the vector K .  The dimensionless deviatoric tensor H 

takes explicitly into account anisotropic effects. The second-order tensor C is deduced 
from an analysis of the formal behaviour of the solutions of the linear equation (2.3) 
(obtained when the nonlinear term t i j  is dropped out). C is found to be 

Cij( t )  = F;l(t) l y ( t ) ;  

F depends on the mean field through the equation 

and introduces a time memory. 
These three arguments are considered as being sufficiently representative of the 

turbulent field as to admit Kj to be an isotropic tensorial function. Rigorously, Qij 

includes both a real symmetricd even part and a n  imaginary nnt8isynirnetrical odd one 



252 C.  Cambon, D. Jeandel and J .  Mathieu 

(zero in the case of real initial data). The imaginary contribution appears only in the 
expressions of P!:) and #$) under a quadratic form. Retaining then a first-order 
expansion with Hij  for qj and for the final expression of the terms ( 3 . 2 ) ,  i t  is consistent 
to neglert the imaginary part; accordingly we use the tensorial expression (Cambon 
f 079) 

q j  = (6ii-aLal) (&jn -ajan) [&in{ 1 - (15 + 7 ~ )  H,,~,,cz,} - 2 a q 1 , ] ,  (3.4) 

ret>aining t,he folloming formal properties : 

and 

The scalar parameter n must be expressed in terms of the invariants relative to H and C.  

4. Closed equation for the second-order tensor pij 

With a defined form for bi j  the right-hand side of the basic equation ( 3 . 1 )  can be 
calculated analytically. IS'$) and €'$) are written in terms of general integrals, the 
properties of which are underlined : 

with n < 3 and i ; ~  [ I ,  2 , 3 ]  
and 

where 6" is a sum of Kronecker symbols products defined by 

Accordingly, we have 

The formal expression of Pi;) given by (4.1) is similar to that proposed by Lumley 
(1975) and Launder, Reece & Rodi (1975) for the velocity pressure correlation term 
in physical space. 

I n  ( 3 . 2 )  the integration d3P is simplified by using the new variables 
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For a fixed orientation of K, the angular position of the plane, in which is located the 
triadic system K ,  P ,  &, is defined by 8. 

We introduce 

ai = K i / K ;  Pi = P,/P; yi = Qi/Q; x = -Ply[;  y = -sly,; z = - o I I / ~ I ,  

and the expressions for P$jj and S$) reduce to 

so that it follows that 

The integration in terms of P and Q has to be performed over the area A,, so that 
K, P, Q form a triangle. 

The integral lozn df? of products of unit vector components pi is expressed in terms of 

K ,  P ,  Q and products of components ai. Consequently the integrals 

calculated by the above-mentioned technique. 
A first-order expansion with respect to H gives 

5.  The 7 and a functions 
These two unkown functions q(K,  t )  and a(K,  t )  are determined by referring to two 

limiting cases : the decay of an isotropic turbulence, and the behaviour of a turbulent 
field subject to a rapid distortion. 

For the case of isotropic turbulence hij ,  Hij ,  Pi;), Pi;) and S$) are zero. 
The spectrum tensor ai j  can be written 

It is defined by the single scalar function E ( K ,  t ) .  Therefore the dynamic equation for 
the energy spectrum function E ( K )  is 

(;+2vK2) E(K, t )  = T ( K , t ) ,  

where T ( R ,  t )  is related to Si$) by T ( K ,  t )  = $##)(I<, t ) .  
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FIGURE 1. Downstream evolution of three-dimensional energy and transfer spectra. --, data 
from Comte-Bellot & Corrsin (1971), M = 5.08 cm, U, = 10 m s-l; ---, calculated with the 
EDQNM theory. 

Under its simplified form, the previous model leads to the classical EDQNM theory for 
isotropic turbulent fields. 

From Pouquet et al. (1976) the eddy damping rate 7 can be taken in the form 

despite the fact that  the expression is not well justified a t  small K ,  where 7 ( K )  - K 2  
appears more acceptable. 

The decay of an isotropic turbulence is predicted and compared with experimental 
data of Comte-Bellot & Corrsin (1971). The selected value of the constant A( = 0-360) 
has already been chosen by Andre & Lesieur (1977) referring to the test field model 
results in inertial range for large values of the turbulent Reynolds number. It is con- 
venient for this case (figure 1) and seems suitable for various turbulent fields. 

I n  order to determine the second function a(K,  t ) ,  comparisons are made for the case 
of a rapid distortion. Where a pure straining is applied to an isotropic turbulent field, 
the analytical solution of equation (2.3) can be compared with (3.4). The compatibility 
between the two expressions leads to  the relation 

with 

The expression (5.1) for a(K,  t )  is taken for any homogeneous fields; for large values 
of K ,  when H goes to zero, it is supplemented by the restriction 

la(K, t)I < a,, a, = 4.5. 
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Analytical solution 

0 k Parametrization method 

(a) 

FIGURE 2.  Comparison between analytical linear solution and parametrization method for the 
rapid distortion of initially isotropic turbulence (a) by plane irrotational strain and (6) by 
plane shear. Angular shape of second-order spectral tensors. 
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a t v 4  0 (,X 
a\., Analytical solution 

[1=030] 

( h )  

FIGURE 2 ( b ) .  For legond see p. 255.  
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FIGURE 3. Plane irrotational strain applicd to  initially isotropic turbulence. Initial data from 
Comte-Bellot & Corrsin (1971). Spectiu~n functions p L , ( K )  anti ZvICzp,,(TC). ---, linclnr 
solution; - - -, present model. 

FIGURE 4. Plane shear applied t o  iniiially isotropic turbulence ; initial data from Comte-Bellot & 
Corrsin (1971). Spectrum functions pij(K) and 2vK2p i j (K)  in the principal axes of tho piirc 
distortion. --, Linear solution; - - -, present model. 
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FIGURE 5 .  Plane irrotational strain ; downstream evolution of the deviatoric tensor b77. 
it , m , 4, experirnen tal data from Gence (1979) ; ---, present model. 

Starting from the linear form of equation (2.3),  analytical solutions are computed for 
two particular homogeneous flows subjected to a straining process; the mean values pi i  
are deduced; from the corresponding value of H, it is possible to evaluate qj. I n  
figures 2 (a) and ( b ) ,  comparisons are made between the angular shape of the analytical 
solution of (2.3) and that obtained by the parametrization method. For each angular 
position, in the plane normal to  K, the two principal axes to Q i j  are drawn and their 
lengths are proportional to eigenvalues. 

6. Numerical results 
The closed equation (3.1) is numerically solved. First, we examine the role played 

by turbulent structures as a function of their sizes. An initially isotropic turbulence 
suddenly subjected to either a pure strain or a shear flow is considered. Computations 
are carried out from the complete equation (3.1); similar computations are also 
performed when the nonlinear terms are dropped out. Spectral results are compared 
in figures 3 and 4. For small values of K ,  the linear effects (S$, Pi;)) prevail, whereas 
the isotropy of the small structures is ensured by nonlinear effects. 

Secondly, a comparison is made with experimental data given by Gence (1979). 
A quasi-isotropic turbulence is subjected to successive plane strains. 

For lack of information, additional hypothesis are made in order to relate initial 
conditions on vtj to available measurements. 

The energy spectrum E ( K ,  0) is deduced from one-dimensional data E,,(K,, 0) : 

The small anisotropy, at the entrance of the distorting duct, is taken into account 
by supposing the initial anisotropy to be generated by an hypothetic strain A!$ acting 
on an isotropic turbulence during a short time Ato. It can he shown that the kinetic 
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I I 
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FIGURE 6. Application of two successive plane strains of opposite sign. Downstream of the 
deviatoric tensor bi j .  * , m ,*, experimental data from Gence (1979) ; -, present model. 

turbulent energy is not significantly altered by this hypothetic strain, whereas the 
small anisotropy is governed by 

from which we also have 

In a first stage the initially quasi-isotropic turbulence is subjected t o  a unique 
straining process. Figure 5 shows the deviatoric tensor b,, as a function of the strain 
ratio. 

I n  a second stage, the same isotropic field is successively subjected to two plane 
strains of opposite signs. The components of b,, are presented in figure 6. 

For the cases where the principal axes of the second strain have been rotated 
through an angle a with respect to the first one, comparisons are made in figure 7 (a )  
between the computed values of the second invariant b,, and experiments1 data. 

The model underestimates the level of anisotropy; the adaptativity of the mean flow 
to the sudden change of the strain axes is not instantaneous, so that some discrepancies 
should be observed. In  the same conditions a rapid distortion theory is applied to 
equation (2 .3 ) ;  the results are shown in figure 7 ( b ) .  

When the mean velocity gradient is dropped, the anisotropic turbulence coming from 
the distorting duct is analysed in figure 8. In  physical space, Rotta (1951) suggested 

appropriate form for the nonlinear part of the rate-of-strain pressure (>orrelation. 
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FIGURE 7.  Application of two successive plane strains rotated through an angle a. (a )  Down- 
stream evolution of the invariant I1 = bi j  b j i .  *, o , A , , #, experimental data from Gence 
(1979);  - - - ,  present model. ( b )  Rapid distortion. Evolution of the invariant II = b i j b j i .  --, 
analytical solution; - - -, present model. 

This term is responsible for the intercomponent energy exchange and the following 
form is proposed : 

e is the rate of turbulent energy dissipation and Lumley (1975) proposed for C, 

c, = 1 4  1 + 7-446bijbii). (6.1) 

With the spectral model, appropriate values of C(~J') are computed : 
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FIGURE 8. Return to isotropy of distorted turbulence. Downstream evolution of b, j  and corre- 
sponding evolution of the rates of decrease of anisotropy. 0 ,  A ,  *, experimental data from 
Gcnce (1979) ; --, present model. 

These values are roughly consistent with those given by the approach of Lumley. I n  
the distorting part of the duct, smaller values are deduced from (6.1) whereas larger 
ones are obtained where the mean velocity gradient is dropped out. I n  this last situation 
(return to isotropy), the results presented herein seem in agreement with those of 
Schumann & Herring (1976). 

7. Conclusion 
The method presented herein is an extension of the EDQNM theory to  moderately 

anisotropic turbulent flows subjected to mean velocity gradients. I n  order to simplify 
the computing approach, a spectral function is introduced which includes the overall 
informations required to obtain final results depending on the modulus of wavenumber 
h' only. 

The action of the mean field is explicitly taken into account through the linear terms 
of the equation governing the double correlations. Where the equation for triple 
correlations is concerned, the role played by both viscous terms and the fourth-order 
cumulants are grouped into a same term by introducing an eddy damping coefficient. 
For convenience and also for lack of information, the term which takes explicitly into 
account the mean velocity gradient is also grouped with the two previous one. Accord- 
ingly, the anisotropy of the turbulence is mainly introduced through the term Q$' 
related to the double correlations. Such an assumption leads to an equation which is 
treated by means of a Markovian hypothesis. 

A good agreement with tvpicixl data is foiind. Sonic improvements will bc made 



262 G .  Cambon, D. Jeandel and J. Mathieu 

possible when additional experimental data become available. Three-dimensional 
spectra are necessary to support this kind of theory in detail. 

We are very indebted to Professor Chevray, Mr Gence and Mr Bertoglio for many 
helpful discussions and assistance. This research has been su-pported by the D.R.E .T 
under contract no. 79/366. 
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